Irisin Controls Growth, Intracellular Ca2+ Signals, and Mitochondrial Thermogenesis in Cardiomyoblasts

نویسندگان

  • Chao Xie
  • Yuan Zhang
  • Tran D. N. Tran
  • Hai Wang
  • Shiwu Li
  • Eva Vertes George
  • Haoyang Zhuang
  • Peilan Zhang
  • Avi Kandel
  • Yimu Lai
  • Dongqi Tang
  • Westley H. Reeves
  • Henrique Cheng
  • Yousong Ding
  • Li-Jun Yang
  • Guo-Chang Fan
چکیده

Exercise offers short-term and long-term health benefits, including an increased metabolic rate and energy expenditure in myocardium. The newly-discovered exercise-induced myokine, irisin, stimulates conversion of white into brown adipocytes as well as increased mitochondrial biogenesis and energy expenditure. Remarkably, irisin is highly expressed in myocardium, but its physiological effects in the heart are unknown. The objective of this work is to investigate irisin's potential multifaceted effects on cardiomyoblasts and myocardium. For this purpose, H9C2 cells were treated with recombinant irisin produced in yeast cells (r-irisin) and in HEK293 cells (hr-irisin) for examining its effects on cell proliferation by MTT [3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and on gene transcription profiles by qRT-PCR. R-irisin and hr-irisin both inhibited cell proliferation and activated genes related to cardiomyocyte metabolic function and differentiation, including myocardin, follistatin, smooth muscle actin, and nuclear respiratory factor-1. Signal transduction pathways affected by r-irisin in H9C2 cells and C57BL/6 mice were examined by detecting phosphorylation of PI3K-AKT, p38, ERK or STAT3. We also measured intracellular Ca2+ signaling and mitochondrial thermogenesis and energy expenditure in r-irisin-treated H9C2 cells. The results showed that r-irisin, in a certain concentration rage, could activate PI3K-AKT and intracellular Ca2+ signaling and increase cellular oxygen consumption in H9C2 cells. Our study also suggests the existence of irisin-specific receptor on the membrane of H9C2 cells. In conclusion, irisin in a certain concentration rage increased myocardial cell metabolism, inhibited cell proliferation and promoted cell differentiation. These effects might be mediated through PI3K-AKT and Ca2+ signaling, which are known to activate expression of exercise-related genes such as follistatin and myocardin. This work supports the value of exercise, which promotes irisin release.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irisin Ameliorates Hypoxia/Reoxygenation-Induced Injury through Modulation of Histone Deacetylase 4

Irisin is a recently identified myokine which brings increases in energy expenditure and contributes to the beneficial effects of exercise through the browning of white adipose tissues. However, its effects in the heart remains unknown. This study sought to determine the effects of irisin on hypoxia/reoxygenation injury and its relationship with HDAC4. Wild type and stable HDAC4-overexpression ...

متن کامل

Irisin exerts dual effects on browning and adipogenesis of human white adipocytes.

To better understand the role of irisin in humans, we examined the effects of irisin in human primary adipocytes and fresh human subcutaneous white adipose tissue (scWAT). Human primary adipocytes derived from 28 female donors' fresh scWAT were used to examine the effects of irisin on browning and mitochondrial respiration, and preadipocytes were used to examine the effects of irisin on adipoge...

متن کامل

ROCK1 reduces mitochondrial content and irisin production in muscle suppressing adipocyte browning and impairing insulin sensitivity

Irisin reportedly promotes the conversion of preadipocytes into "brown-like" adipocytes within subcutaneous white adipose tissue (WAT) via a mechanism that stimulates UCP-1 expression. An increase in plasma irisin has been associated with improved obesity and insulin resistance in mice with type 2 diabetes. But whether a low level of irisin stimulates the development of obesity has not been det...

متن کامل

Ca2+-associated triphasic pH changes in mitochondria during brown adipocyte activation

OBJECTIVE Brown adipocytes (BAs) are endowed with a high metabolic capacity for energy expenditure due to their high mitochondria content. While mitochondrial pH is dynamically regulated in response to stimulation and, in return, affects various metabolic processes, how mitochondrial pH is regulated during adrenergic stimulation-induced thermogenesis is unknown. We aimed to reveal the spatial a...

متن کامل

Mitochondrial regulation of intracellular Ca2+ signaling: more than just simple Ca2+ buffers.

Mitochondrial Ca(2+) uptake shapes the profile of intracellular Ca(2+) signals, both spatially and temporally. In addition, such uptake controls the gating of Ca(2+) release and store-operated Ca(2+) entry channels, partitions cells into subcellular Ca(2+) hotspots, and can result in the release of diffusible signals into the cytosol that subsequently regulate protein function.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015